Valid Sudoku & Sudoku Solver
Medium & Hard
嵌套9格 检查
Valid Sudoku
Check Subbox Index
S1
依次检查每一行、每一列以及每一个九宫格的数字元素是否在1-9之间,并且是否没有重复。
class Solution {
public:
bool isValidSudoku(vector<vector<char> > &board) {
if(board.size()!=9 || board[0].size()!=9) return false;
// check row
for(int i=0; i<9; i++) {
vector<bool> used(9,false);
for(int j=0; j<9; j++) {
if(!isdigit(board[i][j])) continue;
int k = board[i][j]-'0';
if(k==0 || used[k-1]) return false;
used[k-1] = true;
}
}
//check col
for(int j=0; j<9; j++) {
vector<bool> used(9,false);
for(int i=0; i<9; i++) {
if(!isdigit(board[i][j])) continue;
int k = board[i][j]-'0';
if(k==0 || used[k-1]) return false;
used[k-1] = true;
}
}
// check subbox
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
int row = 3*i;
int col = 3*j;
vector<bool> used(9,false);
for(int m=row; m<row+3; m++) {
for(int n=col; n<col+3; n++) {
if(!isdigit(board[m][n])) continue;
int k = board[m][n]-'0';
if(k==0 || used[k-1]) return false;
used[k-1]=true;
}
}
}
}
return true;
}
};
Ref: https://www.youtube.com/watch?v=4-SF0-p98NM&t=288s
Sudoku Solver
和N-Queen思路基本一样。对每个需要填充的位置枚举1-9,对每个枚举判断是否符合所在行、列、九宫格。如果符合则进行下一层递归。终止条件为填写完了整个棋盘。
这道求解数独的题是在之前那道 Valid Sudoku 验证数独 的基础上的延伸,之前那道题让我们验证给定的数组是否为数独数组,这道让我们求解数独数组,跟此题类似的有 Permutations 全排列,Combinations 组合项 ,N-Queens N皇后问题等等,其中尤其是跟 N-Queens N皇后问题的解题思路及其相似.
对于每个需要填数字的格子带入1到9,每代入一个数字都判定其是否合法,如果合法就继续下一次递归,结束时把数字设回'.',判断新加入的数字是否合法时,只需要判定当前数字是否合法,不需要判定这个数组是否为数独数组,因为之前加进的数字都是合法的,这样可以使程序更加高效一些,具体实现如代码所示:
class Solution {
public:
void solveSudoku(vector<vector<char> > &board) {
if (board.empty() || board.size() != 9 || board[0].size() != 9) return;
solveSudokuDFS(board, 0, 0);
}
bool solveSudokuDFS(vector<vector<char> > &board, int i, int j) {
if (i == 9) return true;
if (j >= 9) return solveSudokuDFS(board, i + 1, 0);
if (board[i][j] == '.') {
for (int k = 1; k <= 9; ++k) {
board[i][j] = (char)(k + '0');
if (isValid(board, i , j)) {
if (solveSudokuDFS(board, i, j + 1)) return true;
}
board[i][j] = '.';
}
} else {
return solveSudokuDFS(board, i, j + 1);
}
return false;
}
bool isValid(vector<vector<char> > &board, int i, int j) {
for (int col = 0; col < 9; ++col) {
if (col != j && board[i][j] == board[i][col]) return false;
}
for (int row = 0; row < 9; ++row) {
if (row != i && board[i][j] == board[row][j]) return false;
}
for (int row = i / 3 * 3; row < i / 3 * 3 + 3; ++row) {
for (int col = j / 3 * 3; col < j / 3 * 3 + 3; ++col) {
if ((row != i || col != j) && board[i][j] == board[row][col]) return false;
}
}
return true;
}
};
class Solution {
public:
void solveSudoku(vector<vector<char> > &board) {
if(board.size()<9 || board[0].size()<9) return;
bool findSol = solSudoku(board, 0, 0);
}
bool solSudoku(vector<vector<char>> &board, int irow, int icol) {
if(irow==9) return true;
int irow2, icol2;
if(icol==8) {
irow2 = irow+1;
icol2 = 0;
}
else {
irow2 = irow;
icol2 = icol+1;
}
if(board[irow][icol]!='.') {
if(!isValid(board, irow, icol)) return false;
return solSudoku(board, irow2, icol2);
}
for(int i=1; i<=9; i++) {
board[irow][icol] = '0'+i;
if(isValid(board, irow, icol) && solSudoku(board, irow2, icol2)) return true;
}
// reset grid
board[irow][icol] = '.';
return false;
}
bool isValid(vector<vector<char>> &board, int irow, int icol) {
char val = board[irow][icol];
if(val-'0'<1 || val-'0'>9) return false;
// check row & col
for(int i=0; i<9; i++) {
if(board[irow][i]==val && i!=icol) return false;
if(board[i][icol]==val && i!=irow) return false;
}
//check 3x3 box
int irow0 = irow/3*3;
int icol0 = icol/3*3;
for(int i=irow0; i<irow0+3; i++) {
for(int j=icol0; j<icol0+3; j++) {
if(board[i][j]==val && (i!=irow || j!=icol)) return false;
}
}
return true;
}
};