Iterative Depth First Traversal of Graph
https://www.geeksforgeeks.org/iterative-depth-first-traversal/
// An Iterative C++ program to do DFS traversal from
// a given source vertex. DFS(int s) traverses vertices
// reachable from s.
#include<bits/stdc++.h>
using namespace std;
// This class represents a directed graph using adjacency
// list representation
class Graph
{
int V; // No. of vertices
list<int> *adj; // adjacency lists
public:
Graph(int V); // Constructor
void addEdge(int v, int w); // to add an edge to graph
void DFS(int s); // prints all vertices in DFS manner
// from a given source.
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}
// prints all not yet visited vertices reachable from s
void Graph::DFS(int s)
{
// Initially mark all verices as not visited
vector<bool> visited(V, false);
// Create a stack for DFS
stack<int> stack;
// Push the current source node.
stack.push(s);
while (!stack.empty())
{
// Pop a vertex from stack and print it
s = stack.top();
stack.pop();
// Stack may contain same vertex twice. So
// we need to print the popped item only
// if it is not visited.
if (!visited[s])
{
cout << s << " ";
visited[s] = true;
}
// Get all adjacent vertices of the popped vertex s
// If a adjacent has not been visited, then puah it
// to the stack.
for (auto i = adj[s].begin(); i != adj[s].end(); ++i)
if (!visited[*i])
stack.push(*i);
}
}
// Driver program to test methods of graph class
int main()
{
Graph g(5); // Total 5 vertices in graph
g.addEdge(1, 0);
g.addEdge(0, 2);
g.addEdge(2, 1);
g.addEdge(0, 3);
g.addEdge(1, 4);
cout << "Following is Depth First Traversal\n";
g.DFS(0);
return 0;
}
DFS Recursive
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
// C++ program to print DFS traversal from
// a given vertex in a given graph
#include<iostream>
#include<list>
using namespace std;
// Graph class represents a directed graph
// using adjacency list representation
class Graph
{
int V; // No. of vertices
// Pointer to an array containing
// adjacency lists
list<int> *adj;
// A recursive function used by DFS
void DFSUtil(int v, bool visited[]);
public:
Graph(int V); // Constructor
// function to add an edge to graph
void addEdge(int v, int w);
// DFS traversal of the vertices
// reachable from v
void DFS(int v);
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}
void Graph::DFSUtil(int v, bool visited[])
{
// Mark the current node as visited and
// print it
visited[v] = true;
cout << v << " ";
// Recur for all the vertices adjacent
// to this vertex
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
DFSUtil(*i, visited);
}
// DFS traversal of the vertices reachable from v.
// It uses recursive DFSUtil()
void Graph::DFS(int v)
{
// Mark all the vertices as not visited
bool *visited = new bool[V];
for (int i = 0; i < V; i++)
visited[i] = false;
// Call the recursive helper function
// to print DFS traversal
DFSUtil(v, visited);
}
int main()
{
// Create a graph given in the above diagram
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
cout << "Following is Depth First Traversal"
" (starting from vertex 2) \n";
g.DFS(2);
return 0;
}