Construct Binary Tree from Inorder and Postorder Traversal
Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree. For example, given
inorder = [9,3,15,20,7]
postorder = [9,15,7,20,3]
Return the following binary tree:
3
/ \
9 20
/ \
15 7
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
return treeHelper(begin(postorder), end(postorder), begin(inorder), end(inorder));
}
private:
// vector<int>::iterator ps_first, ps_end, in_first, in_end;
template <typename IT>
TreeNode* treeHelper(IT ps_first, IT ps_end, IT in_first, IT in_end) {
if(ps_first == ps_end || in_first == in_end) return nullptr;
int rtval = *prev(ps_end);
TreeNode* root = new TreeNode(rtval);
//vector<int>::iterator index;
auto index = find(in_first, in_end, rtval);
// left subtree size
int lsize = distance(in_first, index);
root->left = treeHelper(ps_first, next(ps_first, lsize),
in_first, index);
// bug 1, index is the iterator of vector<int> inorder, not post order
// bug 2, prev(ps_end) point to the last element, not ps_end(point to the element after the last element)
//root->right = treeHelper(next(ps_first, lsize), index,
root->right = treeHelper(next(ps_first, lsize), prev(ps_end),
next(index), in_end);
return root;
}
};